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Abstract 

 

This is a proposal to examine the existence of, and to assess the possible impact 

of, the effects of the clustering of items around reading passages on NAEP outcomes.  

 

It is well known that the NAEP employs item response theory (IRT) in its analytic 

procedure to process item responses. One of the basic premises of IRT is the local 

independence among item responses given student proficiency. Such an assumption is 

hard to justify when items are clustered around a reading passage, as in the Reading 

Assessment, or around a hands-on science project, as in the Science Assessment. 

Information derived from a cluster is typically less than that derived from locally 

independent items. In the extreme case, information derived from asking several slightly 

differently phrased questions is almost equivalent to that from asking a single question. 

This could lead to an overestimation of the precision in student proficiency. We have 

collected empirical evidence from an earlier study that local dependency (deviation from 

the local independence assumption) exists in the 1994 Long Term Trend Reading 

Assessment. With the growing use of item clusters in NAEP, it has become pressing to 

develop analytic procedures that enable one to assess the impact of passage effect, and to 

use these procedures to assess the actual impact on NAEP reported proficiency scores. 

 

We propose four studies. In the first study, we propose a rigorous statistical 

procedure to identify and measure local dependency in NAEP data. We have already 

performed extensive analysis on the Long Term Trend Reading Assessment in this study. 

In the other studies, we propose to compare NAEP outcomes under the locally dependent 

and locally independent models. Local dependency is captured via the use of a statistical 

model. Because of the introduction of this new component of dependency structure into 

the already sophisticated NAEP methodology, the resulting analytic procedure becomes 

computationally difficult. We propose to solve the problem, within our practical 

limitation of resources, first by approximating the NAEP methodology using a Bayesian 

approach, and secondly, by limiting the scope of our study.  The Bayesian framework 

encompasses both the locally independent and locally dependent models, and it enables 
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us to use powerful computational tools to perform the necessary inference.  With the aid 

of a simulated response data set modeled after the Long Term Trend Reading 

Assessment, we demonstrate how these Bayesian tools are deployed to solve the locally 

independent and locally dependent models. 
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Assessing the Psychometric Effects of Item Clustering Around Passages in the 

National Assessment of Educational Progress 

 

Eddie Ip 
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1.  Objective 

The objective of the proposed project is to investigate the existence of passage 

effect and its possible impact on the precision of reported NAEP results. That is, does the 

clustering of items around a passage or task have a psychometric effect on reported 

proficiency scores, and, if it does, in what way and by how much. In the process, we 

propose to develop, under a rigorous statistical framework, analytic procedures directed 

to this purpose.  

 

2.  Statement of the Problem 

Item clusters are ubiquitous in NAEP assessments. An item cluster is defined as a 

collection of two or more items that share a common reading passage. The reading 

passage could be a literary passage from the NAEP Reading Assessment, or a description 

of a scientific experiment in the NAEP Science Assessment.  The use of item clusters in 

NAEP assessments seems to be increasing over the years.  The Science Assessment, for 

example, following guidelines suggested by the NAEP Governing Board (1996), recently 

began to pilot test item blocks – large item clusters that are centered on one task or 

hands-on experiment. A student is asked to perform a simple experiment, using a 

standard experiment kit. Then the student answers several questions related to that 

experience. The rise in popularity of item clusters is understandable and is a welcome 

trend.  Multiple choice tests that contain only standalone items can hardly be used to test 

a student’s ability to organize, connect and integrate information. Item clusters, on the 

other hand, may be more flexible in testing higher cognitive skills such as integration of 

concepts and recognizing connections between various pieces of information. For 

example, items from a reading passage of the ecology of a pond may test how a student’s 

understanding of science can lead to his understanding of its societal impact.  
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 While it is understandable that clustered items are well suited for testing higher 

cognitive skills, the possible correlation between responses within an item cluster given a 

particular level of student proficiency creates a psychometric problem and also possible 

problems on the precision of reported NAEP results.  It is well known that NAEP uses 

item response theory (IRT) to scale items (Beaton & Zwick, 1992). One basic premise in 

IRT is the local independence assumption that the responses are conditionally 

independent given ability or proficiency (Lord and Novick, 1968). Loosely speaking, this 

means that the correlation between a student’s item responses can be completely 

explained by the proficiency of the student and no other factors.  

The assumption of local dependency (LI) seems hardly defens ible when a NAEP 

assessment consists of one or more item clusters.  Consider the following hypothetical 

example. A Reading Assessment consists of ten item clusters – five of them are reading 

passages concerning “boy activities” such as baseball and automobiles, and the other five 

concern “girl activities” such as home economics and fashion design. A boy and a girl 

who both correctly respond to, say, 70% of the items may be judged to have 

approximately the same reading proficiency. However, a closer look at their response 

patterns may reveal that the boy tends to correctly answer the items in clusters regarding 

“boy activities,” and the girls correctly answer “girl activities” items. Specifically, we can 

say that there exists a student-cluster interaction effect. In psychometric terms, given 

reading proficiency, item responses do not satisfy the condition of LI.  

Mathematically, the LI assumption can be stated as :  

   ) | y=YP( ) | y=YP(=) | y=YP( JJ11 ,θθθ L    (1) 

where jY  is the response to item j, θ  is the unobserved student proficiency, and  

),,( 1 JYYY L= . Deviation from the local independency condition specified by equation 

(1) will be referred to as local dependency (LD).   

How does LD affect a test consisting of clustered items? Wainer(1995) points out 

that items in a cluster are to some extent redundant. He states: 

To the extent that the response to the second item in a pair depends on 

(and, therefore, can be predicted from) the response to the first item, 

beyond prediction from the underlying proficiency being measured, the 
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second item provides less information than would a completely (locally) 

independent item. (p. 158) 

Consider the following extreme case:  if all the items in a cluster of J>1 related 

items are almost perfectly correlated (for example, when the same question is phrased 

slightly differently several times), then the information in this cluster effectively reduces 

to the information from a single item. The rest of the items are redundant. Statistically, 

the reduction of information due to LD in a test implies that the standard error of the 

ability estimate as measured by the test under the LI assumption is understated. In other 

words, the precision of the reported student score is overstated. Under maximum 

likelihood (ML) theory, information in student proficiency θ  is measured by the Fisher 

information function I( )θ . The standard error of the ML estimate of θ  is given by 

1 / I( )θ . Junker (1991) shows that the calculation of the standard error of the ML 

estimate for proficiency may fail badly when LI is violated. His result, however, indicates 

that the consistency property of the ML estimate still holds under some weak conditions. 

This finding suggests that particular attention should be paid to obtaining the correct 

standard error. The extent to which the standard error is understated (or equivalently, 

information overstated) generally varies with the extent of LD present in a test.  

Empirical evidence also suggests the presence of LD in NAEP item responses and 

other large-scale tests. According to the first co-Principal Investigator (PI)’s experience 

while working for the Large-scale Assessment Group at the Educational Testing Service 

(ETS), one possible cause of poor fit to an item response curve is the clustering effect. 

For example, he observed that there was a substantial number of items that exhibited 

rather poor fits to the NAEP model in a pilot study of the Science Assessment, where 

several large blocks of item clusters are each related to a hands-on experiment. The 

number of items that exhibited poor fits was unusually large and seemed to be beyond the 

explanation that this occurrence was purely due to chance or small sample size. The first 

co-PI also studied the extent of LD present in the 1994 Long Term Trend Reading 

Assessment. He used several measures of LD such as Yen’s 3Q  statistic (Yen, 1984), the 

bivariate correlation and cross product ratio (Plackett, 1965), and an adjusted Mantel-

Haenzsel statistic (Mantel & Haenzsel, 1959), to assess the magnitude of LD present in 

the assessment (Ip, 1998). The bivariate correlation between item pairs, after partialing 
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out student proficiency, can be as high as 0.35.  Using a multiple hypothesis testing 

procedure based on false discovery rate (Benjamini & Hochberg ,1995), he found that ten 

out of a total of 20 item pairs within clusters exhibit significant LD. In yet another large 

scale testing program, the Law School Admission Test (LSAT), Reese (1995) presents 

evidence of LD in item clusters and discusses the behavior of LD item pairs and their 

impact on LSAT results using simulated data. With the growing use of item clusters, the 

theoretical study and the empirical evidence on the presence and possible effect of LD 

should merit attention. They have several important implications for the reporting of 

NAEP scores:  

1. It is necessary to investigate the existence of LD in NAEP Assessments – for 

example, to identify item pairs that exhibit significant LD through rigorous statistical 

procedures such as multiple hypothesis testing, and to develop interpretable measures 

of LD.   

2. It is necessary to assess the effect of LD on the reported mean scores across 

subgroups and subjects. Based on the asymptotic result of Junker (1991), we suspect 

that the effect of LD on location would be minimal. That is, with large samples, the 

location of student proficiency can be accurately estimated even when LI is violated.  

3. It is necessary to assess the extent to which standard errors of individual and group 

proficiency scores are affected by LD.  

4. It is necessary to assess the impact of the effects of possibly affected standard errors 

on NAEP reported mean scores across subgroups – for example, on the comparison of 

proficiency across subgroups.  

In particular, Issue 4 has practical significance besides statistical concerns because results 

of comparison between subgroup scores can be greatly affected by changes in standard 

errors. For example, an underestimated standard error of mean subgroup scores may 

make a non-significant result appear significant. Incorrectly reported significant results 

could have educational and political consequences that lead to unnecessary confusions 

and controversies.  

 

3.  The Proposed Studies 

To address the above four concerns, we propose to examine the impact of the possible 
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passage effect on reported NAEP results through four studies that are coded as S1 

through S4.  

• S1 studies ways to detect, identify, and measure LD between item pairs through the 

use of multiple significance tests and other statistical techniques. The study was 

partially funded by the Zumberge Grant from the University of Southern California to 

the first co-PI. A large part of S1 is already underway. In particular, the first co-PI has 

developed methods and software for the purpose of S1 (Ip, 1998).  We plan to apply 

the developed procedures to a sample of NAEP assessments.  

• S2 examines the effect of LD on simulated item responses that have a specific 

dependency structure among the items. The dependency structure is specified via a 

statistical model.  

•  Using the proposed statistical model in S2, S3 examines the impact of the possible 

effect of clustering on the location and standard errors of mean proficiency scores in a 

sample of NAEP assessments where item clusters are heavily used. We plan to use 

the Reading Assessment and the Science Assessment.  

• S4 ascertains the impact of the possible effect of clustering on NAEP reported results 

such as multiple comparison of mean scores across subgroups. 

 

3.1 Challenge and strategy 

The four studies S1-S4 proposed in subsection 3.0 have different requirements. 

For example, S1 does not require a new statistical model other than IRT. We only need to 

construct measures of devia tion from LI and to devise methods of testing whether the 

deviation is statistically significant. On the other hand, S2-S4 require a statistical model 

that would enable one to capture the LD component potentially present in NAEP item 

clusters. In particula r, for S3 and S4, the result derived from the LD model is compared 

to that derived from the LI model. Figure 1 summarizes the design and information flow 

for studies S3 and S4.  
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Figure 1. Block diagram to summarize information flow 

in studies S3 and S4 

 

To develop an appropriate model for LD is a challenging task, not because such 

models are unavailable, but because they have to be (a) compatible with the current 

NAEP methodology, and (b) computationally feasible in terms of our practical time, 

human, and computer resources. It would be difficult to obtain convincing results if the 

investigation is based on models completely independent of the current NAEP 

methodology.  

  On the other hand, it is not possible for us to replicate the procedures of the 

NAEP analysis that were developed by the contractor of NAEP, the ETS. The complexity 

of both the data structure and the analytic procedure is overwhelming. For example, in 

the Plausible Values Methodology (PVM) procedure, NAEP stores over 270 background 

variables and interactions and in many cases, uses over 100 conditioning variables 

(principal components from the background variables and their interactions). The 
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program CGROUP, which performs the PVM procedure on multiple scales, contains 

thousands of lines of Fortran codes  (MGROUP User’s Guide, Version 3.0, 1995), and is 

not easy to mimic. Fortunately, for our purpose it is not necessary to reproduce NAEP 

analyses in every detail. Our goal is to study the impact of passage effects on NAEP 

reported results and not to replicate NAEP analysis.  

Our strategy to meet the modeling and computational challenge is to (a) closely 

approximate the NAEP technology by constructing a computationally feasible model that 

is psychometrically general enough to include both the LI and LD models, and (b) limit 

the scope of our study.  In following this strategy, we believe that it is possible to achieve 

reliable and credible results in assessing the effect of item clustering on NAEP outcomes.  

In subsections 3.2 to 3.4, we elaborate our strategy in (a) by describing the 

frameworks underlying studies  S1, and S2-S4 , and then we provide an outline for (b), 

on the limits of the scope of our study. Other components in the design of studies S3 and 

S4 (Figure 1), such as weights and transformation of scores, are discussed in subsections 

3.5. 

 

3.2 Framework for Detecting Local Dependency in Study S1 

We propose to use a well established significance test procedure, the Mantel-

Haenszel (MH) test (Mantel & Haenszel, 1959) as a basis for identifying item pairs that 

exhibit LD beyond random chance. To apply the MH procedure, we first divide the 

students into discrete levels of proficiency according to some estimates of proficiency 

(e.g., the ML estimate). For each item pair within a cluster, we test the hypothesis that the 

item responses given proficiency are independent. Item pairs that show significant 

deviation from the hypothesis are identified as LD pairs.  

Because of the substantial number of significance tests that are performed (e.g., 

there are 20 significance tests in the 1994 Long Term Trend Reading Assessment), it is 

necessary to use multiple testing procedures to control the error rate. An unguarded use 

of a single-inference procedure to all item pairs within clusters would result in greatly 

increased false positive rates. That is, we may discover more LD pairs than there really 

are, because of data “dredging” or “snooping”. We propose to use the Benjamini-

Hochberg (1995) procedure to control the false positive rate. This procedure is shown to 
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be superior in striking a balance between being too loose (resulting in spurious 

discoveries) and being too tight (resulting in loss of power). For a discussion of the 

properties of the procedure, see Williams, Jones, and Tukey (1994), and Sha ffer (1995). 

The procedure can be applied to both dichotomous and polytomous responses (Ip, 1998). 

We plan to apply the procedure to a sample of other NAEP Assessments, including those 

where item clusters are heavily used.  

 

3.3 Framework for Analysis in Studies S2-S4 

Studies S2-S4 will be conducted under a Bayesian framework. This framework 

contains several important components. First, the framework treats the passage effect as a 

nuisance factor instead of a psychometrically interesting “dimension”.  Second, to 

capture LD, this framework contains a submodel that is consistent with this “nuisance 

factor” perspective. Third, to facilitate inference on both the LI and LD models, the 

framework utilizes an encompassing Bayesian approach that enables us to, within our 

practical limitations of computational capacities, closely approximate the NAEP 

methodology.  

 

3.3.1 Local Dependency as a Nuisance Factor 

 Holland and Rosenbaum (1986) discuss the three important conditions that restrict 

the IRT model so that it can become meaningful. The conditions are monotonicity in 

P Y y( | )= θ , M; unidimensionality in θ , U; and local independency, LI,  as given by 

equation (1).  

 In many educational and psychological tests, including NAEP, items are 

developed by content experts according to specifications and are substantively judged to 

satisfy U, to the extent that a dominant trait explains a high proportion, if not all, of the 

variance in the response.  In the case where several highly correlated dimensions are 

present in a group of presumably unidimensional items, it may be hypothesized that the 

single dimension is a weighted combination of the several dimensions so that U 

approximately holds. Yen (1984) and McKinley (1983) present empirical evidence that 

support this argument. It is, of course, possible that when several different content 

domains are assessed in a single test, the test is clearly multidimensional. The solution to 
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the problem often simplifies tremendously when each item or item cluster is developed 

for a specific domain and therefore purportedly only measures an ability in a specific 

dimension. Unidimensional psychometric methodology would then be sufficient. The 

NAEP Main Reading Assessment provides an example --- Reading items are developed 

by domain experts according to three global purposes: Reading the Literary Experience, 

Reading to Gain Information, and Reading to Perform a Task (National Assessment 

Governing Board, 1992). Each item or cluster of items related to a reading passage is 

designed to assess a single purpose or dimension. The three specific dimensions (called 

“scales” or “subscales” in NAEP terminology) are calibrated individually using 

unidimensional IRT models and subsequently assembled for multivariate inference by 

utilizing common student background information (Mislevy, Johnson, & Muraki, 1992). 

In most, if not all NAEP assessments, the condition U seems to hold from substantive 

analysis and seems to be a reasonable assumption (e.g., see Zwick, 1987). 

 From a multidimensional factor analytic perspective, passage effect may be 

interpreted as the result of the presence of multiple dimensions. In the hypothetical 

example discussed in Section 2, one may model the idiosyncratic components present in 

each reading passage that cannot be explained by the dominant trait as distinctive, 

additional dimensions, whether they are baseball knowledge or home economic skills. 

Such an approach, however, might lead to unnecessarily complex IRT models. 

When item clusters are present in an assessment by design, it seems appropriate to 

view the LD that arises from the clustering effect of items around a passage as a 

“psychometric nuisance” due to an exogenous factor of item design, rather than as a 

substantively interesting cognitive “dimension” due to student proficiency.  We propose a 

random effects model to capture the LD that is due to the passage effect.   

   

3.3.2 A Random Effects Model for Local Dependency 

NAEP uses three distinct scaling models in the data analysis in its most recent 

assessments (Johnson, Mislevy, & Thomas, 1992). For multiple-choice items, the items 

are scaled by a three-parameter logistic (3PL) model. For a specific NAEP scale, the 

equation of the 3PL model is the probability that student i whose proficiency is 

characterized by the latent variable iθ  is  
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where  

ijY  is the response of student i to item j, 1 if correct and 0 if not; 

ja   is the slope parameter of item j, characterizing its sensitivity to proficiency; 

jb   is the threshold parameter of item j, characterizing its difficulty; 

jc  where 10 ≤≤ jc , is the lower asymptote parameter of item j, reflecting the 

chances of students of very low proficiency selecting the correct option.  

For short constructed response items and polytomous items, NAEP respectively 

uses a 2PL model and the generalized partial credit model (Muraki, 1992) to scale its 

items. Under the LI assumption, the overall probability of observing a specific response 

pattern conditional on proficiency is given by substituting item response functions such 

as (2) into the right hand side of equation (1).  For the purpose of illustrating our 

proposed modeling of passage effect, we use the 3PL model in the following discussion 

and assume that there is only one scale.   

We propose to use a random effects model (e.g., see Bartholomew, 1987) to 

capture the LD that arises from the clustering of items. The idea of the random effects 

model is similar to that of the latent variable model in IRT. The basic premise of the 

random effects model is that correlation among items after partialing out student 

proficiency arises from their sharing unobservable student-cluster interaction effect. 

Mathematically, the introduction of a random effect on item clustering into the 3PL 

model leads to the following item response function : 
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where )( jimγ  is a random variable from a specified probability distribution, for example, 

the normal distribution with mean 0 and variance 2
mτ . The subscript )( jm indicates that 

item j is nested within cluster m. The variable )( jimγ  is the interaction between the 

“nuisance” ability of student i and the reading passage m. It is defined to be 0 for 

standalone items. Model (3) together with equation (1) define our LD model. One can 
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interpret the parameter  2
mτ  as an indication of the average strength of student-cluster 

interaction effect of all the items that belong to cluster m. If  02 >mτ , the student-cluster 

interaction term induces a positive correlation between item responses given proficiency, 

when the items are from the same cluster. In Appendix A, we demonstrate how positive 

correlation is induced by the student-cluster interaction under a normal random effects 

model. When 02 =mτ , the random effects model in (3) becomes the 3PL model (2).  In 

other words, model (3) subsumes the LI model. This set up allows us to use rigorous 

statistical procedures to test the hypothesis whether or not there exists student-cluster 

interaction. In statistical terms, the null and alternative hypotheses respectively are 

0: 2
0 =mH τ  and 0: 2 >maH τ . The significance test for an overall cluster-student 

interaction effect supplements the tests for LD item pairs proposed in S1.  

In an earlier study of the 1994 Long Term Trend Reading Assessment, Ip (1998) 

found that the correlation at a given proficiency level tends to be generally positive, and 

fairly consistent across levels of proficiency. Moreover, the level of LD tends not to be 

extreme. These results seem to support the view that the student-cluster interaction is a 

psychometric nuisance rather than a discernible cognitive dimension and that it creates a 

positive correlation among items within a cluster.  

 The random effects model (3) has a nice ANOVA-type interpretation and can 

easily be subsumed under a Bayesian fraemwork.  

   

3.3.3 A Bayesian Approach to Approximating the NAEP Methodology 

This subsection explains the why and the how the proposed Bayesian framework 

can be adapted for the purpose of closely approximating the current NAEP model.  

 

Why Go Bayesian 

  The framework that NAEP adopted for its data analysis can be briefly 

summarized as follows (Mislevy, Johnson, & Muraki, 1992): First, use a marginal 

maximum likelihood model to scale the items. Item parameters are estimated from this 

procedure. Second, apply a Plausible Values Methodology (PVM), due to Mislevy (1991) 
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and Rubin (1987), to the responses from cognitive and background items, regarding the 

estimated item parameters as fixed.  

The second procedure derives, for each individua l student, plausible values -- 

quantities that are multiple random draws from an estimated distribution of student 

proficiency. The PVM is designed to produce optimal estimates of population effects. 

NAEP reported student proficiency scores in terms of these plausible values.  Figure 2  

 

Figure 2. The NAEP Model for Data Analysis 

summarizes the NAEP model. 

Both procedures are closely related to Bayesian IRT analysis. For example, 

Mislevy (1986) presents a two-stage Bayesian procedure that is an extension of the 

marginal model NAEP employed in the estimation of item parameters. When a vague 

prior distribution is specified, the Bayesian model produces the marginal maximum 

likelihood estimate.  

On the other hand, the PVM is in essence a poor man’s Bayesian analysis, with no 

due disrespect of the term “poor.” The background information of students is built into 

the prior distribution of student proficiency θ  by the following linear regression model : 

εθ +Γ= x       (4) 

where Γ  represents the regression coefficents, x denotes the included background 

variables and interactions or the conditioning variables, and ε  is a random quantity that 
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is assumed to be normally distributed with mean 0 and covariance matrix Σ . The 

proficiency θ  may be a scalar (for one scale), or a vector (for multiple scales). This 

model works within the class of hierarchical Bayesian models (Kass & Steffey, 1989). 

Furthermore, the PVM uses only 5 imputed values, drawn from the posterior distribution 

of student proficiency given responses, conditioning variables and estimated parameters. 

As a result, the PVM greatly reduces the amount of computation that is required for a 

full-blown Bayesian estimation of the entire student posterior proficiency score 

distribution. In summary, a fully Bayesian approach can be seen as a generalization of the 

two NAEP procedures described above.   

Besides being capable of accommodating the current NAEP model, the Bayesian 

approach also makes it technically possible to compute proficiency estimates under both 

the LD and LI models. Within the practical limits of time, human, and computational 

resources, the Bayesian approach offers a reasonable approximation to the NAEP 

technology. Recent advances in technology have produced flexible and powerful 

computational tools for Bayesian analysis – the  so-called “Markov Chain Monte Carlo” 

techniques including the Data Augmentation algorithm (Tanner & Wong, 1987), the 

Gibbs sampler (Geman & Geman, 1984), and the Metropolis-Hastings algorithm 

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1952; Hastings, 1970).  These 

advanced tools work remarkably well with missing and latent data even under highly 

complex models. The recent surge of interest in these tools has resulted in the 

improvement and extension of their capacities (e.g., see Smith & Robert, 1993). They 

enable us to reasonably mimic the sophisticated technology employed by NAEP in its 

scaling and PVM procedures.  

One example of such approximation would be the use of Bayesian tools such as 

the Gibbs sampler and the Data Augmentation algorithm to substitute for the EM 

algorithm (Dempster, Laird, & Rubin, 1975) used in CGROUP.  The Data Augmentation 

algorithm, which simulates posterior distribution in the presence of latent or missing data, 

in particular, can be regarded as a stochastic version of the EM algorithm (e.g., see 

Gelman, Carlin, Stern, & Rubin, 1995, p. 298).  

We need to point out, however, that we do not claim that the Bayesian approach is 

the only correct way to model the responses.  There has been a significant argument 
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between the “frequentists” and Bayesians in the statistical literature. As Baker (1992) 

points out, “while this controversy has important implications for the field of statistics, it 

has not yet played in major role in IRT. The researchers in IRT have adopted a more 

pragmatic approach in which Bayesian methods are viewed as a means of improving 

parameter estimations.”  Thus, rather than involvement in arguing the philosophical 

underpinning of the issue, we adopt a pragmatic approach in wearing the Bayesian hat, 

for the reasons that the Bayesian framework is both general enough to include both the 

current NAEP LI model and the proposed LD model, and can provide tools that enable us 

to handle the demanding computation.  

 

How Does the Proposed Bayesian Model Work 

A number of Bayesian methodologies for item parameter and proficiency/ability 

estimation have appeared in the psychometric literature, upon which our framework is 

based. Among others, Tsutakawa and Lin (1984), and Swaminathan and Gifford (1985, 

1986) discuss Bayesian approaches to estimate item parameters. Mislevy (1986) , and 

Mislevy and Stocking (1989) provide algorithms for Bayesian analysis in computing 

estimates for student proficiency. Very recent applications of the Bayesian approach to 

IRT and latent variable modeling includes Albert (1992), and Arminger and Muthen 

(1998).   

The Bayesian approach starts with a probability density that characterizes the 

likelihood of a set of variables taking on specific values.  This probability density 

function combines information from a likelihood function (derived from the statistical 

model on observable data) and probabilities obtained using one’s prior information about 

the set of unknown parameters. The prior distribution may itself contain parameters 

called hyperparameters.  

In Figure 3, we present the Bayesian LI model as a schematic diagram so that it 

can be constrasted with the NAEP model in Figure 2. 
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Figure 3. Bayesian LI Model 

 

To simplify notation, we treat x, the background variables, as fixed, and denote 

the collection of parameters and hyperparameters for the prior by Ω . In the NAEP 

model, we treat the regression parameters in the prior distribution of student proficiency 

θ  as a part of the “hyperparameter.”  The likelihood function of the NAEP model 

)|( Ωyp is specified by equations (1), (2), (4), and the IRT model, which integrates out 

the unobserved student proficiency variable θ . The PVM draws 5 values from the 
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∧
Ωyp θ , where 

∧
Ω  denotes the NAEP estimate of parameters.  

The Bayesian LI model, on the other hand, treats the parameters in Ω  as random 

quantities. The Bayesian analysis starts with the following two notions. Prior to the 

collection of data, our knowledge of the variables and parameters is captured by the 

equation  

)()|(),( ΩΩ=Ω ppp θθ .  

After observing data on cognitive items, the posterior density across all items and 

students can be computed via an application of the Bayes theorem: 

),(),|()|,( ΩΩ∝Ω θθθ pypyp .    (5) 

Background
regression
parameters

student proficiency

Item Responses

Item Parameters

IRT Model

Linear
Regression

Model

prior

prior
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The primary goal of the Bayesian solution is to develop models for the joint 

density ),,( yp Ωθ , which is equivalent to the right hand side of (5), and to perform the 

necessary computation to summarize the posterior distributions of various quantities of 

interest.  The quantity ),|( Ωθyp , in particular, is specified by the same equations (1), 

(2) and (4), as in the NAEP model.  

The posterior density )|,( yp Ωθ  in (5) may not be useful for specific purposes. 

The Bayesian method permits one to focus on a specific set of variables of interest by a 

technique called marginalization, that is, by ignoring the variables not of central interest 

and only looking at the margins of those that are of interest. Technically, this is 

accomplished by integrating over the probability distribution with respect to variables not 

of central interest. For example, suppose one is interested in the posterior distribution of 

student proficiency θ  on observing the responses y , then a marginalized posterior 

distribution has the form:   

∫ ΩΩ= dypyp )|,()|( θθ .  

Advanced Bayesian tools such as Markov Chain Monte Carlo, discussed in the 

preceding subsection, perform routine numerical calculations of marginalized posterior 

quantities.  

Given the Bayesian procedure for LI model, now its extension to a LD model is 

straightforward. The additional work required is to incorporate the random effects model 

and the prior distribution of the student-cluster interaction )( jimγ  into the Bayesian 

framework. Indeed, the random effects model is directly specified in (3) and becomes 

part of ),|( Ωθyp  while the prior on )( jimγ  becomes part of ),( Ωθp .  

Because of computational convenience, we propose to use the normal ogive 

model (Lord & Novick, 1968, chapter 16) instead of the logistic model that NAEP 

currently uses to scale cognitive items. The difference between the two models is 

inconsequential over almost the entire range of student proficiency (Haley, 1952, p.7). 

Albert(1992) uses the normal ogive model in a Bayesian estimation of item response 

curve. We note in passing that the normal ogive model is equivalent to the probit model, 

often used in biometrics and econometrics, and can be adapted to model LD  (Bock and 

Gibbons, 1996). 
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In Appendix B, we present the technical details of the proposed Bayesian method 

for simplified IRT models of LI and LD. We further illustrate our method of inference 

with an example from simulated data. 

The specification of prior information in Bayesian analysis sometimes poses a 

problem. Fortunately, past NAEP data provide an empirical basis for selecting 

appropriate prior distributions. For example, the prior distributions for item parameters 

can be specified by a normal distribution with mean and variance estimated from the 

current or a previous assessment.  We may as well choose a diffuse prior to “let the data 

speak for themselves.” Sensitivity analyses can be performed to assess the effect of the 

prior distributions on analysis results.  

   

3.4 Scope of the Study 

We propose to limit the scope of study by (a) using a small subset of the 

background variables, (b) using the original background variables and their interaction 

effects instead of principal components in the PVM procedure, (c) selecting a sample of 

assessments among those that heavily use reading passages and item blocks, and (d) 

using existing NAEP estimated parameters whenever appropriate, e.g. parameters for 

composite weights and for the transformation of plausible values to the NAEP reporting 

scale.  

The purpose of (a) and (b) and (d) is to reduce procedural and computational 

complexity. We propose to select 10 to 20 variables – such as those that are used in 

NAEP reports and those found to be important from substantive analysis, together with 

some of their interactions, to include in our analysis. In consultation with Dr. Frank 

Jenkins, NAEP research scientist at ETS, the first co-PI has compiled a list of candidate 

background variables. The list is given in Appendix C. Note that a subset of background 

variables (rather than principal components of those variables) and their interaction 

effects were used for the actual NAEP Long Term Trend Assessments (e.g., see 

Donoghue, Isham, Bowker, &  Freund, 1994). As for (c), we plan to focus on the NAEP 

Main Assessments, and the Long Term Trend Assessment, where only one test form is 

used. We plan to use at least two different grade levels and two different assessment 

years in our study. However, we do not plan to perform studies using state data.  
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3.5 Other Technical Issues 

3.5.1 Access to Information 

Responses to cognitive items are available on the NAEP data files. Information as 

to which item is in what cluster, however, has not been made available on public user 

data files. We have already obtained clearance from NCES (Gorman, 1998, personal 

communication by Email) to gain access to this information. If necessary, we will apply 

for clearance to examine the actual test booklets.  

 

3.5.2 Weights and Estimation Error Variance 

Two kinds of weights are required in our proposed studies. The reported subgroup 

means are weighted means of student proficiency scores. The weights used for means are 

sampling weights that account for differential probabilities of selection and to allow for 

nonresponse (Johnson & Rust, 1992). They are available on NAEP secondary user files.  

The variance of subgroup means, on the other hand, requires the set of replicate weights. 

The estimation error variance, as it is called, is a function of both the variability due to 

sampling respondents, and the variability due to the latency of the unobserved 

proficiency θ . It is the former variability that requires the set of replicate weights. 

The procedure of obtaining estimates of both variances is documented in Johnson, 

Mislevy, & Thomas (1994). The computation of these variances is critical to studies S3-

S4 because the final standard error of a subgroup mean score is a function of these two 

variances.  

 The computation of the sampling variance is not straightforward. Because of the 

sampling design of NAEP, there exist various clustering effects in how students are 

sampled. As a result, NAEP uses a jackknife estimate based on a set of replicate weights 

(Johnson & Rust, 1992). To facilitate users conducting secondary analysis, ETS has 

developed an Excel add-on called COM that can be used to compute jackknife standard 

errors. Therefore, student scores (plausible values) that are obtained from our analysis 

under various models can be processed using COM to derive jackknife standard errors. 

As suggested by Bruce Kaplan, a senior analyst for the NAEP database at ETS, an 

alternative approach is to extract the data file that contains the replicate weights and 
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student information, and then to program the jackknife formula.  Either way should not 

require elaborate technical know-how (Kaplan, personal communication by Email, 1998).  

 On the other hand, the variance due to the latency of θ  can directly be obtained 

via multiple imputation (Rubin, 1987). The variance due to latency is estimated by the 

sample variance of the multiple draws from the posterior distribution of student 

proficiency.  The Bayesian methodology we proposed is particularly amenable to the 

multiple imputation methodology.  

In accordance to the NAEP methodology, no student weights will be used in the 

item scaling procedure. 

 

3.5.3 Composite Weights and Transformation 

The IRT scale has a linear indeterminacy that may be resolved by an arbitrary 

choice of the origin and unit-size in each given scale. We propose to use the origin and 

the unit-size specified in the current and past NAEP assessments to transform the 

plausible values derived from our Bayesian model to the NAEP reporting scale. The 

transformation procedure is documented throughout various NAEP Technical Reports.  

When multiple proficiency scales are involved (e.g., Main Reading Assessment), 

NAEP reports a composite score that is defined as a weighted average of the results 

across content area scales. We plan to use the NAEP specified weights in calculating the 

composite score. The weights are also documented throughout various NAEP Technical 

Reports. 

 

3.5.4 Software Development 

The second co-PI will develop computer programs in standard C.  Aside from its 

performance advantages, the use of C ensures the ability to work with arbitrarily complex 

data structures, and thus the ability to handle complicated features of NAEP data.  All 

source code for the software will be made available to NCES at the study’s end. 

 
3.6  Related Research 

We must point out that we do not propose a solution to solve the psychometric 

problem of item clustering for NAEP.  A satisfactory solution to the problem would be 
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likely to involve at least both psychometric and administrative (including political) 

considerations. There are at least three important lines of psychometric research that are 

directed to solving the general item clustering problem. All of them are directly and 

indirectly related to our proposed studies. We briefly state their connections with the 

proposed study. Yen (1984), and Chen and Thissen (1997) develop indexes to measure 

LD for item pairs. Hattie (1985) provides a review of measures of deviation from 

unidimensionality. Their research is directly related to study S1. Andrich (1985), 

Rosenbaum (1988), Wainer and Kiely (1987), Sireci, Thissen, and Wainer (1991), and 

more recently Wainer and Thissen (1996) propose to treat items that are related to a 

reading passage or a hands-on experience as a testlet. For example, Wainer and his 

colleagues consider the sum of individual scores in the testlet and treat the testlet as one 

single polytomous item. This approach has some merits (e.g., simplicity in 

implementation) and demerits (e.g., information loss due to aggregation), and was used in 

actual NAEP analysis at ETS, though in rather ad hoc manners. For example, highly 

correlated items that showed large deviations from their estimated item response curves 

were sometimes bundled together to form a testlet.  

Another line of research was the multidimensionality approach. Discussions 

between LD and multidimensionality can be found in Hambleton, Swaminathan, Cook, 

Eignor, and Gifford (1978), Goldstein (1980), Stout (1987,1990), and Jannarone 

(1992a,b). The underlying idea of the multidimensionality approach is to add sufficient 

student proficiency dimensions to the IRT model so that LI can eventually be achieved.  

We contrast the random effects model in equation (3) with a multidimensional model, 

which asserts that the additional correlation between item responses conditional on the 

first dimension of student proficiency may be captured by a second or higher dimension.  

An equation for a two-dimensional model would be 
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where 1iθ  and 2iθ  are the student’s first and second proficiency dimensions. In 

multidimensional IRT, it is typical to assume that 1iθ  and 2iθ  form a pair of random 
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variables that is drawn from a bivariate normal distribution with mean ),( 21 ηη  and a 

variance structure Σ  (with appropriate identifiability constraints). Note that in a 

multidimensional model the term 2iθ  is present in any item response curve, a feature that 

is different from our proposed model (3).  

 The last two lines of research both offer potential values in solving (or partially 

solving) the item clustering problem. The analytic procedures we propose may contain 

elements of a solution to the item clustering problem, but they are primarily directed 

toward the purpose of our proposed investigations in studies S1-S4.  

 

4. End-product 

A report detailing our findings in the proposed studies S1-S4 will be delivered to 

NCES upon the completion of the project. The software that we develop for the analysis 

of NAEP data will also be delivered to NCES, with appropriate documentation. We agree 

that the software can be made publicly available if NCES opts to do that. 

5.  Invitational Priorities 

This proposal addresses the third and fifth invitational priorities for this grant. That is, we 

develop an analytic procedure that improves the precision with which NAEP estimates 

group and subgroup performances; we develop statistical software that allows advanced 

analytic techniques to be readily applied to NAEP data.  

6.  Personnel 

Co-principal investigator: Eddie Ip 

Dr.  Ip received his Ph.D. in statistics from Stanford University in 1995, working 

with Ingram Olkin on multivariate statistics and missing data problems. His master 

degree in education was also received from Stanford. He worked at ETS from 1994-1996 

as associate research scientist in the Large-Scale Assessment Group and was in charge of 

maintaining and supporting the software program CGROUP that implements the 

Plausible Values Methodology. In 1996, he presented at an ETS NAEP seminar series, 

and other seminars, on the Plausible Values Methodology. Since 1996, he has joined the 

Information and Operations Management Department, Marshall School of Business at the 
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University of Southern California (USC) as Assistant Professor. His research interests 

include psychometrics and statistics. In 1997, he was the principal investigator of an 

NCES research grant award “Exploration and Visualization of the NAEP Database via 

Multivariate Multiway Tables.” 

Co-principal investigator: Steven Scott 

Dr. Steven Scott obtained his Ph.D. in statistics from Harvard University in 1998.  

While at Harvard, he learned about multiple imputation, the theoretical foundation of the 

Plausible Values methodology, from its inventor, Don Rubin.  His thesis work with Art 

Dempster proposes a Bayesian model for detecting fraud in international telephone 

traffic. The thesis employed latent variable techniques similar in spirit (though not in 

description) to those mentioned in this document.  Dr. Scott maintains an active 

consulting relationship with AT&T Labs-Research, and is in the process of incorporating 

his model in AT&T’s fraud detection system.  He joined USC’s department of 

Information and Operations Management as Assistant Professor of Statistics in 1998.  His 

research focuses on Bayesian methods for correlated data. 

Secondary investigator: Jeff Yuchung Wang 

Dr. Jeff Yuchung Wang is Associate Professor in the Mathematics Department at 

Rutgers University. His research is in psychometrics and statistics. He obtained his Ph.D. 

in statistics at Rutgers University in 1980. His thesis was under the supervision of Dr. 

Paul Holland, then at ETS. Professor Wang has published in Psychometrika, the Journal 

of the American Statistical Association, Biometrika and other academic journals. Prior to 

joining Rutgers in 1981, he had worked at ETS as a statistical consultant. He was Visiting 

Associate Professor at the Graduate School of Business, University of Chicago, in 1993. 

He visited the University of Southern California three times during 1997-8 and provided 

extensive suggestions on the analysis of locally dependent responses. Dr. Wang 

specializes in psychometrics, especially in the area of correlated categorical data, and 

statistics.  

The resumes of the two co-PI’s and the secondary investigator are included in Appendix 

E.  
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Guidance Panel 

The guidance panel consists of two internationally known statisticians, Professor Art 

Dempster at Harvard University, and  Professor John Rolph at the University of Southern 

California. They will provide guidance and advice on strategy and methodological issues 

such as Bayesian analysis and significance testing on LD item pairs.  

Arthur Dempster is Professor of Theoretical Statistics at Harvard University.  He is the 

first author of one of the most cited paper in statistics, "Maximum Likelihood from 

Incomplete Data via the EM Algorithm." (1977, Journal of the Royal Statistical Society, 

SerB, 39, p1-38). He has made important contributions in multivariate statistics, 

incomplete data analysis, causal inference, and foundations of statistical inference.  His 

1964 paper "On the Difficulties Inherent in Fisher's Fiducial Argument" is regarded by 

the Encyclopedia of Statistics as “the nail in the coffin of fiducial theory.” The most 

recent of his long list of honors is his invitation to give the R.A. Fisher Lecture at the 

1998 Joint Statistical Meetings.  His current research focuses on methodology and logic 

of applied statistics, computational aspects of Bayesian and belief function inference, 

modeling and analysis of dynamic processes; and statistical analysis of medical, social 

and physical phenomena. 

John Rolph, Professor of statistics and chair, Information and Operations Management 

Department, Marshall School of Business, University of Southern California. Dr Rolph 

holds faculty appointments in the USC Law Center and the Mathematics Department. He 

has broad experience using statistics in public policy. Prior to joining USC, he was the 

head of the statistics group at the RAND Corporation. Dr Rolph was the editor of 

CHANCE, and chair of the National Research Council’s Committee on National 

Statistics panel on the use of statistical methods in testing and evaluating defense 

systems. He is current chair of the Committee on National Statistics and chair of the 

Statistics Section of the American Association for the Advancement of Science.  
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Technical Consulting Panel 

The Technical Consulting Panel will provide advice on matters relating to the retrieval of 

data from the NAEP database.  

Phillip Leung is Senior Analyst, Educational Testing Service. He received his B.S. in 

computer science from the College of Staten Island (CUNY). He has worked at ETS for 

ten years and has extensive programming experience and experience working with the 

NAEP database. He is responsible for the programming of statistical decision making for 

computer generated reports in the NAEP Trial State Assessment and the preparation of 

final student weights on the NAEP database . He built the NAEP website almost single-

handedly in 1995 and is now the webmaster for the NAEP Homepage. He is also 

responsible for the redesign of the statistical module library at ETS. In 1996, he was the 

secondary investigator of the NCES Grant titled “Exploration and Visualization of the 

NAEP Database Via Multivariate Multiway Tables” (PI: Eddie Ip).  

 

7. Resources Allocation 

The budget for this project is primarily for labor.  The budget for the category on 

Personnel is comprised of salary for 1.0 month of summer support for each co-PI for each 

year from 1999-2000, and a budget for consulting time (an estimated 1-2 days) from 

Professor Rolph .  The budget on travel includes two trips to Washington D.C. for both 

co-PI’s. The budget item under Contractual includes (a) 0.5 month of summer support for 

the Secondary Investigator for 1999, plus fringe and indirect, (b) cost for data retrieval by 

ETS staff (an estimated 40-50 hours of work) and for service time (an estimated 1-2 

days) from the Technical Consulting Panel, and (c) budget for consulting time (an 

estimated 1-2 days) from Professor Dempster, plus indirect cost.  

USC has agreed that we could recover a substantial percentage (approximately 

50%) of the indirect cost at USC for the purpose of hiring research assistants(RA). 

Because of the difficulty of recruiting high quality RA on a short-term basis, we have 

also applied for an internal USC grant, the Zumberge Research Grant, to provide 
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additional funding for research assistantship. The grant, if awarded, will cover 6 months 

of salary for a RA. The Zumberge grant and the recoverable indirect account will also 

cover supplies such as software and disk storage. The Zumberge grant, in particular, will 

provide partial RA funding for the another project directed by the co-PI’s.    

8.  Management Plan 

Table 1 in Appendix D presents a summary of our management plan. It details the 

time frame and the responsible personnel for each research and development activity 

outlined in Section 3.0.  Dr. Ip will be responsible for directing the implementation of the 

management plan.  Dr.  Scott will be responsible for developing the software required for 

the analysis. Dr.  Wang will be responsible for researching issues of local dependency. 

The research assistant, presumably a graduate level student at the University of Southern 

California, will assist in cleaning the data, checking and verifying results from analysis,  

running programs on various data NAEP sets, and will actively engage in the discussion 

of various research issues. 

We plan to disseminate the results of our investigation through publications in 

high quality journals in statistics, psychometrics and education. Our primary goal is to 

submit the results of our analysis to the Journal of the American Statistical Association, 

section on Case Studies. A report focused on the empirical findings will be submitted to 

Applied Psychological Measurement, or other educational journals. 

We also plan to present the results of our analysis at professiona l conferences 

such as AERA, NCME, the Annual Meeting of the Psychometric Society, and the Joint 

Statistical Meeting (sponsored annually by the American Statistical Association and other 

statistical associations).  

9.  GEPA Provision  

The proposed project does not have participants, thus it is not possible for us to describe 

steps to ensure equitable access to, and participation in, the program. 
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Appendix A 

 

Suppose the response of student i to item j is continuous and is given by the following 
normal model : 

ijjjmijij ebaY ++++= )(φθµ  

where ),0(~ 2
θσθ Ni , ),0(~ 2

)( mjm N σφ , ),0(~ 2
eij Ne σ , and the three variables are 

independent. 

The parameters ja and jb  are item specific and are not random in nature. The term ije is 
a random error due to measurement.  

If item j and item k belong to the same cluster m, then  

jijiij baYE ++= θµθ )|( , kikiik baYE ++= θµθ )|( ,  

and 2
)()( ]|))([()|,cov( miikkmijjmiikij eeEYY σθφφθ =++= . 

When item j and item k belong to different clusters (or one or both are standalone 
items),  0)|,cov( =iikij YY θ . 

Therefore, the conditional correlation between item j and k in the same cluster given iθ  is 
analogous to the intraclass correlation in classical test theory and is given by 

)( 22

2

em

m
jk σσ

σ
ρ

+
= , if items j,k are from the same cluster; 

and 0 otherwise.  

Note that the normal assumption is not necessary in deriving the result. 
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Appendix C 

Demographic and Derived Variables 

Modal grade 

Derived Sex 

Derived Race 

Parents’ Education 

School Rank in Thirds  

Type of Community 

Region of Country 

School Type 

Modal Age 

Home Environment (Learning articles at home) 

How Many Parents Live at Home 

Student Used Calculator Appropriately 

Background Variables 

How Often Language Other Than English Spoken in Home 

How Much TV Watch Each Day 

How Much Time Spent on Homework Each Day 

How Many Pages Read in School and for Homework 

How Many Days of School Missed Last Month 

Does Father or Stepfather Live With You 

How Many Semesters of Math  

Which Best Describes High School Program 



 38 

Student Motivational Questions 

About How Many Questions Did You Think You Get Right? 

How Hard was This Test Compared to Others? 



 39 

 Appendix D 

Management Plan  

 

Task Responsible personnel starting 
time 

time of 
comple-
tion 

time for 
task 
(months) 

Design study, overview database Ip, Scott, Wang month 1 month 2 2 

Data Preparation 

(extraction from secondary user 
files, cleaning, request for 
additional information) 

Ip month 3 month 9 7 

Study S1  

(detect and identify LD) 

Ip, Wang month 10 month 11 2 

Study S2  

(simulation study) 

Ip, Scott month 1 month 9 9 

Study S3 software development 

(Effect on standard error) 

Scott month 1 month 9 9 

Study S4 software development 

(Effect on comparison) 

Scott month 6 month 9 4 

Study S1 data analysis Ip, Wang month 10 month 12 3 

Study S3 data analysis Ip, Scott month 10 month 14 5 

Study S4 data analysis 

 

Ip, Scott month 12 month 16 5 

Review of results Ip, Scott, Wang month 12 month 17 6 

Write up & documentation Ip, Scott month 10 month 18 9 
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